GRASH COURSE

		 1		Ĭ		T	T	T	1			
USN									10EC/TE72			
	 	L	1					1				

Seventh Semester B.E. Degree Examination, May 2017 Optical Fiber Communication

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- a. Discuss briefly the inherent advantages of optical fibers over conventional copper systems.

 (08 Marks)
 - b. Explain the structure of single mode and multimode step index and graded-index optical fibers with cross section and ray path. (07 Marks)
 - Calculate the number of modes of an optical fiber having diameter of 60 μ m, $n_1 = 1.48$, $n_2 = 1.44$ and $\lambda = 1.33 \ \mu$ m. (05 Marks)
- 2 a. Derive an expression for material dispersion which is a function of wavelength using time delay.

 (08 Marks)
 - b. Consider a 30-km long optical fiber that has an attenuation of 0.8 dB/km at 1300 nm. Find the optical output power P_{out} , if 200 μ watts of optical power is launched into the fiber.

(06 Marks)

c. Prove that delay difference between the axial ray and extreme meridional ray is $\delta T_s \cong \frac{Ln_1\Delta}{C}$

(06 Marks)

- 3 a. Draw and explain the cross sectional view of a typical Ga Al As double heterostructure LED, along with energy band diagram and variations in RI profile. (10 Marks)
 - b. Explain the operation of avalanche photodiode with schematic diagram and separate absorption and multiplication (SAM)APD configuration. (10 Marks)
- 4 a. List and sketch different types of splicing techniques and connectors. (08 Marks)
 - b. A GaAs optical source with a refractive index of 3.6 is coupled to a silica fiber that has a RI of 1.48. If the fiber end and source are in close physical contact, then determine Fresnel reflection at the interface and hence power loss in dB. (06 Marks)
 - c. Explain various lensing schemes used to improve optical source to-fiber coupling efficiency with neat diagrams. (06 Marks)

PART - B

- 5 a. Explain with a neat diagram, the basic sections and operations of an optical receiver.
 - (07 Marks)

b. Derive an equation for optical receiver sensitivity.

(08 Marks)

c. Explain Homodyne detection.

- (05 Marks)
- 6 a. Discuss the subcarrier multiplexing technique with a neat relevant diagram. (06 Marks)
 - b. Derive expression for carrier to noise ratio, considering the various noise contributors of an analog optical communication link having single ΛM channel. (10 Marks)
 - c. Write a note on microwave photonics.

10EC/TE72

7 a. Explain operational principle and implementation of WDM.

(08 Marks)

- b. Discuss the three key transition process involved in LASER action with neat energy band diagrams. (04 Marks)
- c. Explain the importance of following active optical components used in WDM based on MEMS:
 - (i) Variable optical attenuators
 - (ii) Tunable optical filters

(08 Marks)

8 a. Explain three main optical amplifier types.

(06 Marks)

- b. Consider an EDFA being pumped at 980 nm with a 30 mW pump source power. If the gain at 1550 nm is 20 dB then find maximum i/p and out powers. (04 Marks)
- c. Describe the SONET 2-fiber unidirectional path switched ring and 4-fiber BLSR with neat sketches. (10 Marks)

* * * *